Andromeda Galaxy

Had Jupiter continued to gain weight, it would have grown ever hotter and hotter, and ultimately self-sustaining, raging nuclear-fusing fires may have been ignited in its heart. This would have sent Jupiter down that long, shining stellar road to full-fledged stardom. Had this occurred, Jupiter and our Sun would have been binary stellar sisters, and we probably would not be here now to tell the story. Our planet, and its seven lovely sisters, as well as all of the moons and smaller objects dancing around our Star, would not have been able to form. However, Jupiter failed to reach stardom. After its brilliant, sparkling birth, it began to shrink. Today, Jupiter emits a mere.00001 as much radiation as our Sun, and its luminosity is only.0000001 that of our Star. The precise chemical composition of these very alien lakes and seas remained unknown until 2014, when Cassini's radar instrument detected Ligeia Mare, now known to be Titan's second-largest hydrocarbon-filled lake. Ligeia Mare is brimming with an abundance of sloshing methane, and this enormous liquid reservoir is approximately the same size as two of Earth's Great Lakes combined--Lake Michigan and Lake Huron. Many planetary scientists think that the seabed of Ligeia Mare may be blanketed with a thick layer of sludge that is composed of organic-rich compounds. "For the smaller craters, it's like if you're filling a bucket, eventually your bucket gets full, but if you keep pouring cups of water into the bucket, you can't tell how many cups of water beyond full you've gone. Looking at the larger craters at the subsurface might give us insight, because that 'bucket' isn't full yet," Dr. Soderblom added.