All Dwarf Planets in the Solar System



The existence of ample amounts of hydrogen in the subsurface ocean of Enceladus indicates that microbes--if any exist there--could use it to obtain energy by mixing with carbon dioxide dissolved in water. This particular chemical reaction, termed methanogenesis, because it manufactures methane as a byproduct, may have been of critical importance in the emergence of life on our planet. Among the ringed gas giant planet Saturn's amazing collection of 62 diverse, bizarre, and beautiful moons and moonlets, sometimes one of them just seems to stand out in the crowd. Such a moon is little Methone. Looking like a shiny white egg in Space, and composed of very lightweight fluffy stuff, Methone is less dense than any other known moon or asteroid in our Solar System. In March 2013, astronomers announced at the 44th Lunar and Planetary Science Conference held in the Woodlands, Texas, that this strange little 5-kilometer-size moon is one of a batch of Space eggs in orbit around Saturn! Therefore, the results of the new study support the idea that primitive life could potentially have evolved on Ganymede. This is because places where water and rock interact are important for the development of life. For example, some theories suggest that life arose on our planet within hot, bubbling seafloor vents. Before the new study, Ganymede's rocky seafloor was believed to be coated with ice--not liquid. This would have presented a problem for the evolution of living tidbits. The "Dagwood sandwich" findings, however, indicate something else entirely--the first layer on top of Ganymede's rocky core might be made up of precious, life-sustaining salty water.